浅入浅出 Spring 事务传播实现原理

本文和大家一起刨析 Spring 事务的相关源码,篇幅较长,代码片段较多,建议使用电脑阅读

本文目标

  • 理解Spring事务管理核心接口
  • 理解Spring事务管理的核心逻辑
  • 理解事务的传播类型及其实现原理

版本

SpringBoot 2.3.3.RELEASE

什么是事务的传播?

Spring 除了封装了事务控制之外,还抽象出了 事务的传播 这个概念,事务的传播并不是关系型数据库所定义的,而是Spring在封装事务时做的增强扩展,可以通过@Transactional 指定事务的传播,具体类型如下

事务传播行为类型 说明
PROPAGATION_REQUIRED 如果当前没有事务,就新建一个事务,如果已经存在一个事务中,加入到这个事务中。Spring的默认事务传播类型
PROPAGATION_SUPPORTS 支持当前事务,如果当前没有事务,就以非事务方式执行。
PROPAGATION_MANDATORY 使用当前的事务,如果当前没有事务,就抛出异常。
PROPAGATION_REQUIRES_NEW 新建事务,如果当前存在事务,把当前事务挂起(暂停)。
PROPAGATION_NOT_SUPPORTED 以非事务方式执行操作,如果当前存在事务,就把当前事务挂起。
PROPAGATION_NEVER 以非事务方式执行,如果当前存在事务,则抛出异常。
PROPAGATION_NESTED 如果当前存在事务,则在嵌套事务内执行。如果当前没有事务,则执行与PROPAGATION_REQUIRED类似的操作。

举个栗子

以嵌套事务为例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
@Service
public class DemoServiceImpl implements DemoService {
@Autowired
private JdbcTemplate jdbcTemplate;

@Autowired
private DemoServiceImpl self;

@Transactional
@Override
public void insertDB() {
String sql = "INSERT INTO sys_user(`id`, `username`) VALUES (?, ?)";
jdbcTemplate.update(sql, uuid(), "taven");

try {
// 内嵌事务将会回滚,而外部事务不会受到影响
self.nested();
} catch (Exception e) {
e.printStackTrace();
}
}

@Transactional(propagation = Propagation.NESTED)
@Override
public void nested() {
String sql = "INSERT INTO sys_user(`id`, `username`) VALUES (?, ?)";
jdbcTemplate.update(sql, uuid(), "nested");

throw new RuntimeException("rollback nested");

}

private String uuid() {
return UUID.randomUUID().toString();
}
}

上述代码中,nested()方法标记了事务传播类型为嵌套,如果nested()中抛出异常仅会回滚nested()方法中的sql,不会影响到insertDB()方法中已经执行的sql

注意:service 调用内部方法时,如果直接使用this调用,事务不会生效。因此使用this调用相当于跳过了外部的代理类,所以AOP不会生效,无法使用事务

思考

众所周知,Spring 事务是通过AOP实现的,如果是我们自己写一个AOP控制事务,该怎么做呢?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// 伪代码
public Object invokeWithinTransaction() {
// 开启事务
connection.beginTransaction();
try {
// 反射执行方法
Object result = invoke();
// 提交事务
connection.commit();
return result;
} catch(Exception e) {
// 发生异常时回滚
connection.rollback();
throw e;
}

}

在这个基础上,我们来思考一下如果是我们自己做的话,事务的传播该如何实现

PROPAGATION_REQUIRED为例,这个似乎很简单,我们判断一下当前是否有事务(可以考虑使用ThreadLocal存储已存在的事务对象),如果有事务,那么就不开启新的事务。反之,没有事务,我们就创建新的事务

如果事务是由当前切面开启的,则提交/回滚事务,反之不做处理

那么事务传播中描述的挂起(暂停)当前事务,和内嵌事务是如何实现的?

源码入手

要阅读事务传播相关的源码,我们先来了解下Spring 事务管理的核心接口与类

  1. TransactionDefinition
    该接口定义了事务的所有属性(隔离级别,传播类型,超时时间等等),我们日常开发中经常使用的 @Transactional 其实最终会被转化为 TransactionDefinition

  2. TransactionStatus
    事务的状态,以最常用的实现 DefaultTransactionStatus 为例,该类存储了当前的事务对象,savepoint,当前挂起的事务,是否完成,是否仅回滚等等

  3. TransactionManager
    这是一个空接口,直接继承他的 interface 有 PlatformTransactionManager(我们平时用的就是这个,默认的实现类DataSourceTransactionManager)以及
    ReactiveTransactionManager(响应式事务管理器,由于不是本文重点,我们不多说)

从上述两个接口来看,TransactionManager 的主要作用

  • 通过TransactionDefinition开启一个事务,返回TransactionStatus
  • 通过TransactionStatus 提交、回滚事务(实际开启事务的Connection通常存储在TransactionStatus中)
1
2
3
4
5
6
7
8
9
10
11
12
public interface PlatformTransactionManager extends TransactionManager {

TransactionStatus getTransaction(@Nullable TransactionDefinition definition)
throws TransactionException;


void commit(TransactionStatus status) throws TransactionException;


void rollback(TransactionStatus status) throws TransactionException;

}
  1. TransactionInterceptor
    事务拦截器,事务AOP的核心类(支持响应式事务,编程式事务,以及我们常用的标准事务),由于篇幅原因,本文只讨论标准事务的相关实现

下面我们从事务逻辑的入口 TransactionInterceptor 入手,来看下Spring事务管理的核心逻辑以及事务传播的实现

TransactionInterceptor

TransactionInterceptor 实现了MethodInvocation(这是实现AOP的一种方式),其核心逻辑在父类TransactionAspectSupport 中,方法位置:TransactionInterceptor::invokeWithinTransaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
protected Object invokeWithinTransaction(Method method, @Nullable Class<?> targetClass,
final InvocationCallback invocation) throws Throwable {
// If the transaction attribute is null, the method is non-transactional.
TransactionAttributeSource tas = getTransactionAttributeSource();
// 当前事务的属性 TransactionAttribute extends TransactionDefinition
final TransactionAttribute txAttr = (tas != null ? tas.getTransactionAttribute(method, targetClass) : null);
// 事务属性中可以定义当前使用哪个事务管理器
// 如果没有定义就去Spring上下文找到一个可用的 TransactionManager
final TransactionManager tm = determineTransactionManager(txAttr);

// 省略了响应式事务的处理 ...

PlatformTransactionManager ptm = asPlatformTransactionManager(tm);
final String joinpointIdentification = methodIdentification(method, targetClass, txAttr);

if (txAttr == null || !(ptm instanceof CallbackPreferringPlatformTransactionManager)) {
// Standard transaction demarcation with getTransaction and commit/rollback calls.
TransactionInfo txInfo = createTransactionIfNecessary(ptm, txAttr, joinpointIdentification);

Object retVal;
try {
// This is an around advice: Invoke the next interceptor in the chain.
// This will normally result in a target object being invoked.
// 如果有下一个拦截器则执行,最终会执行到目标方法,也就是我们的业务代码
retVal = invocation.proceedWithInvocation();
}
catch (Throwable ex) {
// target invocation exception
// 当捕获到异常时完成当前事务 (提交或者回滚)
completeTransactionAfterThrowing(txInfo, ex);
throw ex;
}
finally {
cleanupTransactionInfo(txInfo);
}

if (retVal != null && vavrPresent && VavrDelegate.isVavrTry(retVal)) {
// Set rollback-only in case of Vavr failure matching our rollback rules...
TransactionStatus status = txInfo.getTransactionStatus();
if (status != null && txAttr != null) {
retVal = VavrDelegate.evaluateTryFailure(retVal, txAttr, status);
}
}
// 根据事务的状态提交或者回滚
commitTransactionAfterReturning(txInfo);
return retVal;
}

// 省略了编程式事务的处理 ...
}

这里代码很多,根据注释的位置,我们可以把核心逻辑梳理出来

  1. 获取当前事务属性,事务管理器(以注解事务为例,这些都可以通过@Transactional来定义)
  2. createTransactionIfNecessary,判断是否有必要创建事务
  3. invocation.proceedWithInvocation 执行拦截器链,最终会执行到目标方法
  4. completeTransactionAfterThrowing当抛出异常后,完成这个事务,提交或者回滚,并抛出这个异常
  5. commitTransactionAfterReturning 从方法命名来看,这个方法会提交事务。
    但是深入源码中会发现,该方法中也包含回滚逻辑,具体行为会根据当前TransactionStatus的一些状态来决定(也就是说,我们也可以通过设置当前TransactionStatus,来控制事务回滚,并不一定只能通过抛出异常),详见AbstractPlatformTransactionManager::commit

我们继续,来看看createTransactionIfNecessary做了什么

TransactionAspectSupport::createTransactionIfNecessary
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
protected TransactionInfo createTransactionIfNecessary(@Nullable PlatformTransactionManager tm,
@Nullable TransactionAttribute txAttr, final String joinpointIdentification) {

// If no name specified, apply method identification as transaction name.
if (txAttr != null && txAttr.getName() == null) {
txAttr = new DelegatingTransactionAttribute(txAttr) {
@Override
public String getName() {
return joinpointIdentification;
}
};
}

TransactionStatus status = null;
if (txAttr != null) {
if (tm != null) {
// 通过事务管理器开启事务
status = tm.getTransaction(txAttr);
}
else {
if (logger.isDebugEnabled()) {
logger.debug("Skipping transactional joinpoint [" + joinpointIdentification +
"] because no transaction manager has been configured");
}
}
}

return prepareTransactionInfo(tm, txAttr, joinpointIdentification, status);
}

createTransactionIfNecessary中的核心逻辑

  1. 通过PlatformTransactionManager(事务管理器)开启事务
  2. prepareTransactionInfo 准备事务信息,这个具体做了什么我们稍后再讲

继续来看PlatformTransactionManager::getTransaction,该方法只有一个实现 AbstractPlatformTransactionManager::getTransaction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
public final TransactionStatus getTransaction(@Nullable TransactionDefinition definition)
throws TransactionException {

// Use defaults if no transaction definition given.
TransactionDefinition def = (definition != null ? definition : TransactionDefinition.withDefaults());

// 获取当前事务,该方法有继承 AbstractPlatformTransactionManager 的子类自行实现
Object transaction = doGetTransaction();
boolean debugEnabled = logger.isDebugEnabled();

// 如果目前存在事务
if (isExistingTransaction(transaction)) {
// Existing transaction found -> check propagation behavior to find out how to behave.
return handleExistingTransaction(def, transaction, debugEnabled);
}

// Check definition settings for new transaction.
if (def.getTimeout() < TransactionDefinition.TIMEOUT_DEFAULT) {
throw new InvalidTimeoutException("Invalid transaction timeout", def.getTimeout());
}

// 传播类型PROPAGATION_MANDATORY, 要求当前必须有事务
// No existing transaction found -> check propagation behavior to find out how to proceed.
if (def.getPropagationBehavior() == TransactionDefinition.PROPAGATION_MANDATORY) {
throw new IllegalTransactionStateException(
"No existing transaction found for transaction marked with propagation 'mandatory'");
}
// PROPAGATION_REQUIRED, PROPAGATION_REQUIRES_NEW, PROPAGATION_NESTED 不存在事务时创建事务
else if (def.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRED ||
def.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRES_NEW ||
def.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NESTED) {
SuspendedResourcesHolder suspendedResources = suspend(null);
if (debugEnabled) {
logger.debug("Creating new transaction with name [" + def.getName() + "]: " + def);
}
try {
// 开启事务
return startTransaction(def, transaction, debugEnabled, suspendedResources);
}
catch (RuntimeException | Error ex) {
resume(null, suspendedResources);
throw ex;
}
}
else {
// Create "empty" transaction: no actual transaction, but potentially synchronization.
if (def.getIsolationLevel() != TransactionDefinition.ISOLATION_DEFAULT && logger.isWarnEnabled()) {
logger.warn("Custom isolation level specified but no actual transaction initiated; " +
"isolation level will effectively be ignored: " + def);
}
boolean newSynchronization = (getTransactionSynchronization() == SYNCHRONIZATION_ALWAYS);
return prepareTransactionStatus(def, null, true, newSynchronization, debugEnabled, null);
}
}

代码很多,重点关注注释部分即可

  1. doGetTransaction获取当前事务
  2. 如果存在事务,则调用handleExistingTransaction处理,这个我们稍后会讲到

接下来,会根据事务的传播决定是否开启事务

  1. 如果事务传播类型为PROPAGATION_MANDATORY,且不存在事务,则抛出异常
  2. 如果传播类型为 PROPAGATION_REQUIRED, PROPAGATION_REQUIRES_NEW, PROPAGATION_NESTED,且当前不存在事务,则调用startTransaction创建事务
  3. 当不满足 3、4时,例如 PROPAGATION_NOT_SUPPORTED,此时会执行事务同步,但是不会创建真正的事务

Spring 事务同步在之前一篇博客中有讲到,传送门👉https://www.jianshu.com/p/7880d9a98a5f

Spring 如何管理当前的事务

接下来讲讲上面提到的doGetTransactionhandleExistingTransaction,这两个方法是由不同的TransactionManager自行实现的

我们以SpringBoot默认的TransactionManager,DataSourceTransactionManager为例

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
@Override
protected Object doGetTransaction() {
DataSourceTransactionObject txObject = new DataSourceTransactionObject();
txObject.setSavepointAllowed(isNestedTransactionAllowed());
ConnectionHolder conHolder =
(ConnectionHolder) TransactionSynchronizationManager.getResource(obtainDataSource());
txObject.setConnectionHolder(conHolder, false);
return txObject;
}

@Override
protected boolean isExistingTransaction(Object transaction) {
DataSourceTransactionObject txObject = (DataSourceTransactionObject) transaction;
return (txObject.hasConnectionHolder() && txObject.getConnectionHolder().isTransactionActive());
}

结合 AbstractPlatformTransactionManager::getTransaction 一起来看,doGetTransaction 其实获取的是当前的Connection。
判断当前是否存在事务,是判断DataSourceTransactionObject 对象中是否包含connection,以及connection是否开启了事务。

我们继续来看下TransactionSynchronizationManager.getResource(obtainDataSource())获取当前connection的逻辑

TransactionSynchronizationManager::getResource
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
private static final ThreadLocal<Map<Object, Object>> resources =
new NamedThreadLocal<>("Transactional resources");

@Nullable
// TransactionSynchronizationManager::getResource
public static Object getResource(Object key) {
// DataSourceTransactionManager 调用该方法时,以数据源作为key

// TransactionSynchronizationUtils::unwrapResourceIfNecessary 如果key为包装类,则获取被包装的对象
// 我们可以忽略该逻辑
Object actualKey = TransactionSynchronizationUtils.unwrapResourceIfNecessary(key);
Object value = doGetResource(actualKey);
if (value != null && logger.isTraceEnabled()) {
logger.trace("Retrieved value [" + value + "] for key [" + actualKey + "] bound to thread [" +
Thread.currentThread().getName() + "]");
}
return value;
}

/**
* Actually check the value of the resource that is bound for the given key.
*/
@Nullable
private static Object doGetResource(Object actualKey) {
Map<Object, Object> map = resources.get();
if (map == null) {
return null;
}
Object value = map.get(actualKey);
// Transparently remove ResourceHolder that was marked as void...
if (value instanceof ResourceHolder && ((ResourceHolder) value).isVoid()) {
map.remove(actualKey);
// Remove entire ThreadLocal if empty...
if (map.isEmpty()) {
resources.remove();
}
value = null;
}
return value;
}

看到这里,我们能明白DataSourceTransactionManager是如何管理线程之间的Connection,ThreadLocal 中存储一个Map,key为数据源对象,value为该数据源在当前线程的Connection

image.png

DataSourceTransactionManager 在开启事务后,会调用TransactionSynchronizationManager::bindResource将指定数据源的Connection绑定到当前线程

AbstractPlatformTransactionManager::handleExistingTransaction

我们继续回头看,如果存在事务的情况,如何处理

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
private TransactionStatus handleExistingTransaction(
TransactionDefinition definition, Object transaction, boolean debugEnabled)
throws TransactionException {

// 如果事务的传播要求以非事务方式执行 抛出异常
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NEVER) {
throw new IllegalTransactionStateException(
"Existing transaction found for transaction marked with propagation 'never'");
}

// PROPAGATION_NOT_SUPPORTED 如果存在事务,则挂起当前事务,以非事务方式执行
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NOT_SUPPORTED) {
if (debugEnabled) {
logger.debug("Suspending current transaction");
}
// 挂起当前事务
Object suspendedResources = suspend(transaction);
boolean newSynchronization = (getTransactionSynchronization() == SYNCHRONIZATION_ALWAYS);
// 构建一个无事务的TransactionStatus
return prepareTransactionStatus(
definition, null, false, newSynchronization, debugEnabled, suspendedResources);
}

// PROPAGATION_REQUIRES_NEW 如果存在事务,则挂起当前事务,新建一个事务
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRES_NEW) {
if (debugEnabled) {
logger.debug("Suspending current transaction, creating new transaction with name [" +
definition.getName() + "]");
}
SuspendedResourcesHolder suspendedResources = suspend(transaction);
try {
return startTransaction(definition, transaction, debugEnabled, suspendedResources);
}
catch (RuntimeException | Error beginEx) {
resumeAfterBeginException(transaction, suspendedResources, beginEx);
throw beginEx;
}
}

// PROPAGATION_NESTED 内嵌事务,就是我们开头举得例子
if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NESTED) {
if (!isNestedTransactionAllowed()) {
throw new NestedTransactionNotSupportedException(
"Transaction manager does not allow nested transactions by default - " +
"specify 'nestedTransactionAllowed' property with value 'true'");
}
if (debugEnabled) {
logger.debug("Creating nested transaction with name [" + definition.getName() + "]");
}
// 非JTA事务管理器都是通过savePoint实现的内嵌事务
// savePoint:关系型数据库中事务可以创建还原点,并且可以回滚到还原点
if (useSavepointForNestedTransaction()) {
// Create savepoint within existing Spring-managed transaction,
// through the SavepointManager API implemented by TransactionStatus.
// Usually uses JDBC 3.0 savepoints. Never activates Spring synchronization.
DefaultTransactionStatus status =
prepareTransactionStatus(definition, transaction, false, false, debugEnabled, null);
// 创建还原点
status.createAndHoldSavepoint();
return status;
}
else {
// Nested transaction through nested begin and commit/rollback calls.
// Usually only for JTA: Spring synchronization might get activated here
// in case of a pre-existing JTA transaction.
return startTransaction(definition, transaction, debugEnabled, null);
}
}

// 如果执行到这一步传播类型一定是,PROPAGATION_SUPPORTS 或者 PROPAGATION_REQUIRED
// Assumably PROPAGATION_SUPPORTS or PROPAGATION_REQUIRED.
if (debugEnabled) {
logger.debug("Participating in existing transaction");
}

// 校验目前方法中的事务定义和已存在的事务定义是否一致
if (isValidateExistingTransaction()) {
if (definition.getIsolationLevel() != TransactionDefinition.ISOLATION_DEFAULT) {
Integer currentIsolationLevel = TransactionSynchronizationManager.getCurrentTransactionIsolationLevel();
if (currentIsolationLevel == null || currentIsolationLevel != definition.getIsolationLevel()) {
Constants isoConstants = DefaultTransactionDefinition.constants;
throw new IllegalTransactionStateException("Participating transaction with definition [" +
definition + "] specifies isolation level which is incompatible with existing transaction: " +
(currentIsolationLevel != null ?
isoConstants.toCode(currentIsolationLevel, DefaultTransactionDefinition.PREFIX_ISOLATION) :
"(unknown)"));
}
}
if (!definition.isReadOnly()) {
if (TransactionSynchronizationManager.isCurrentTransactionReadOnly()) {
throw new IllegalTransactionStateException("Participating transaction with definition [" +
definition + "] is not marked as read-only but existing transaction is");
}
}
}
boolean newSynchronization = (getTransactionSynchronization() != SYNCHRONIZATION_NEVER);
// 构建一个TransactionStatus,但不开启事务
return prepareTransactionStatus(definition, transaction, false, newSynchronization, debugEnabled, null);
}

这里代码很多,逻辑看上述注释即可。这里终于看到了期待已久的挂起事务和内嵌事务了,我们还是看一下DataSourceTransactionManager的实现

  • 挂起事务:通过TransactionSynchronizationManager::unbindResource 根据数据源获取当前的Connection,并在resource中移除该Connection。之后会将该Connection存储到TransactionStatus对象中
1
2
3
4
5
6
7
// DataSourceTransactionManager::doSuspend
@Override
protected Object doSuspend(Object transaction) {
DataSourceTransactionObject txObject = (DataSourceTransactionObject) transaction;
txObject.setConnectionHolder(null);
return TransactionSynchronizationManager.unbindResource(obtainDataSource());
}

在事务提交或者回滚后,调用 AbstractPlatformTransactionManager::cleanupAfterCompletion会将TransactionStatus 中缓存的Connection重新绑定到resource中

  • 内嵌事务:通过关系型数据库的savePoint实现,提交或回滚的时候会判断如果当前事务为savePoint则释放savePoint或者回滚到savePoint,具体逻辑参考AbstractPlatformTransactionManager::processRollbackAbstractPlatformTransactionManager::processCommit

至此,事务的传播源码分析结束

prepareTransactionInfo

上文留下了一个问题,prepareTransactionInfo 方法做了什么,我们先来看下TransactionInfo的结构

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
protected static final class TransactionInfo {

@Nullable
private final PlatformTransactionManager transactionManager;

@Nullable
private final TransactionAttribute transactionAttribute;

private final String joinpointIdentification;

@Nullable
private TransactionStatus transactionStatus;

@Nullable
private TransactionInfo oldTransactionInfo;

// ...
}

该类在Spring中的作用,是为了内部传递对象。ThreadLocal中存储了最新的TransactionInfo,通过当前TransactionInfo可以找到他的oldTransactionInfo。每次创建事务时会新建一个TransactionInfo(无论有没有真正的事务被创建)存储到ThreadLocal中,在每次事务结束后,会将当前ThreadLocal中的TransactionInfo重置为oldTransactionInfo,这样的结构形成了一个链表,使得Spring事务在逻辑上可以无限嵌套下去

如果觉得有收获,可以关注我的公众号,你的点赞和关注就是对我最大的支持